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Abstract 
In this paper we introduce simple classifiers 
as an example of how to use the data depen- 
dent hypothesis class framework described by 
Cannon et al. (2002) to explore the perfor- 
mance/computation trade-off in the classi- 
fier design problem. We provide a specific 
example of a simple classifier and demon- 
strate that it has many remarkable proper- 
ties: For example it possesses computation- 
ally efficient learning algorithms with favor- 
able bounds on estimation error, admits ker- 
nel mappings, and is particularly well suited 
to boosting. We present experimental results 
on synthetic and real data that suggest that 
this classifier is competitive with powerful al- 
ternative methods. 

1. Introduction 

Consider the standard machine learning framework 
built around the Vapnik-Chervonenltis (VC) theory 
(Vapnik, 1998) and its treatment of the well known 
error minimization problem where we seek a classi- 
fier that minimizes the expected classification error. 
This framework provides performance guarantees for 
classifiers designed through empirical error minimiza- 
tion, but empirical error minimization is computa- 
tionally hard for most nontrivial hypothesis classes. 
On the other hand restriction to trivial hypothesis 
classes alleviates the computational difficulties but 
does not provide good performance. These two ex- 
tremes emphasize the importance of developing frame- 
works that facilitate the exploration of more moderate 
portions of the performance/computation space. Can- 
non et al. (2002) introduced a modification of the 

standard framework that enables this type of explo- 
ration in a nontrivial way. It involves an extension of 
the VC theory to the case where the hypothesis class 
depends on the data. In this new framework classi- 
fier design is decomposed into two components: the 
first is a restriction to a data dependent subclass of a 
hypothesis class and the second is empirical error min- 
imization within that subclass. Exploration of the per- 
formance/computation trade-off is then performed in 
terms of the choice of data dependent hypothesis class. 
The study of how this choice affects performance is 
decomposed into two terms: estimation error which 
quantifies that portion of the error due to finite sam- 
ple effects and approximation error which is the best 
error achievable by the data dependent class. To dis- 
tinguish between hypothesis classes that are data de- 
pendent and those that are not we refer to the latter as 
“traditional classes”. Cannon et al. (2002) introduced 
and analyzed several elementary examples of data de- 
pendent classes that were shown to fall between the 
two extremes. These examples motivate the introduc- 
tion of sample classes. 

We call a data dependent hypothesis class simple if the 
specific class realized by any given data set is the poly- 
nomial union of linearly ordered hypothesis classes, 
where a linearly ordered class is one whose indica- 
tor sets are linearly ordered by subset inclusion. We 
show how this definition facilitates the development of 
bounds on estimation error and computation. It also 
appears to facilitate the discovery of classes which are 
expressive enough to have good approximation error 
in practice. In Section 3 we define and analyze the 
linear point-to-point (LPP) data dependent hypothe- 
sis class as an example of a simple class. This function 
class has some remarkable properties. For example, in 
contrast to the intractability of empirical error mini- 



mization over traditional linear classifiers, LPP admits 
a low-order polynomial-time algorithm for empirical 
error minimization that is simple, numerically robust, 
fully parallelizable and has no free parameters. In ad- 
dition we provide bounds on estimation error for LPP 
that are independent of dimension and similar in form 
to those obtained for a traditional class with VC di- 
mension equal to 3. We also provide similar bounds 
on the difference between training and generalization 
error which is beneficial when it is important to have 
an accurate estimate of the actual performance of the 
classifier in the absence of a large test set. Because the 
estimation error bounds are independent of dimension, 
we are motivated to map to a higher dimensional space 
to improve performance, and since LPP classifiers are 
linear, computations can still be performed in the orig- 
inal space by employing kernel mappings. This situa- 
tion is similar to support vector machines but here we 
optimize empirical error over a restricted class rather 
than margin over the unrestricted class. In summary, 
the simple class LPP when coupled with empirical er- 
ror minimization successfully addresses nearly all the 
key issues in the classifier design problem. 

The outstanding issue is approximation error, which 
we do not analyze theoretically but rather through 
simulations. Our results are consistent with the tradi- 
tional framework in that they depend heavily on how 
well the class is matched to the process generating 
the data. We can address this issue in our framework 
by using elementary constructions to create additional 
simple classes. Cannon et al. (2003) construct alterna- 
tive simple classes to demonstrate this observation. In 
this paper we only treat the LPP class but we consider 
the use of kernels and boosting (Schapire et al., 1998) 
as means for reducing approximation error. Kerneliz- 
ing LPP is motivated in the above discussion about 
estimation error bounds. Boosting is especially suit- 
able because LPP admits computationally efficient al- 
gorithms, even for weighted empirical error minimiza- 
tion. Boosting calls for the production of a base clas- 
sifier at each round that minimizes a weighted empiri- 
cal error. For most nontrivial hypothesis classes mini- 
mizing weighted empirical error is computationally in- 
tractable. Our empirical results demonstrate that even 
when LPP performs poorly on a particular problem 
instance it may be kernelized and/or boosted to a per- 
formance that is comparable to powerful methods such 
as support vector machines and random forests. 

2. Error Minimization over Data 
Dependent Hypothesis Spaces 

Consider a set X, the binary set Y = {0,1} and a 
probability space 2 = X x Y. Let z = (z,y) de- 
note the corresponding random variable with proba- 
bility measure P,  conditional probability measures Py 
and y-marginal probability measure P. Let F denote 
a class of functions (classifiers) f : X -+ Y and let 

4f) = P ( f ( z )  # Y) 

denote the generalization error of the classifier f. Let 
e* = inffE3e(f) denote the best error achievable 
in the class F. We further suppose that we collect 
n independent identically distributed (i.2.d.) samples 
(z(l), z(2), .., z(n)) from P and use them to construct 
an empirical error function 

The work of Vapnik and Chervonenkis (1974) justifies 
the.time honored learning strategy that chooses to 
minimize 8 by establishing the following probabilistic 
guarantee: 

where V ( F )  is the Vapnik-Chervonenkis dimension of 
the function class F. 
This result is only applicable when the the hypoth- 
esis class is chosen before data is observed. Cannon 
et al. (2002) showed that one could allow the hy- 
pothesis class to depend on the data and still obtain 
a bound on estimation error similar to (1). Following 
Cannon et al. (2002) we outline this result now. Let z, 
denote the n-sample consisting of individual samples 
zn(i),i = l , . . ,n. Given an n-sample z,, we consider 
functions from a hypothesis space F,, which can de- 
pend on the n-sample and so is defined by a class Fn 
of functions on (Zn, 2). We define a data dependent 
class F = {Fn} to be a collection of such classes .En. 
Next we define shatter coefficients for data-dependent 
function classes. 
Definition 2.1. Let & ( z ~ ~ , F )  be the number of dis- 
tinct dichotomies of 2n points z2, generated by the 
function classes Fz,, where z, c 22, varies over all 
size n subsets of zzn. That is, let If = {z : f ( z )  = l} 
denote the indicator set where the function is equal to 

'In this paper we ignore questions of whether minima 
or maxima are actually attained. This detail is easy to 
include by introducing approximation parameters and a p  
proximate minima/maxima but obscures the presentation. 



one. Then Nn(z2,,F) is the number of different sets 
in 

We define the shatter coefficients as 
{z2n n l f  : f E 3zn,zrl c z2,). 

Theorem 2.1 (Cannon et al., 2002) below provides a 
bound on estimation error when using data dependent 
hypothesis classes. The proof of this theorem relied 
heavily on the main result from Cannon et al. (2002) 

P"( SUP l e ( f )  - W)l > €1 5 
(2) 

f f T Z , &  

2~,,2,(.~,)e2ce-+ 

which bounds the error deviance. 
Theorem 2.1. Let Y = {0 ,1}  and let F be a data- 
dependent classifier space. Given an 2.i.d. n-sample 
z,, let 

= inf e(f)  
f E F Z ,  

denote the optimal generalizatiop error in the data de- 
pendent class Fzn and choose f to solve the learning 
strategy 

min 6(f) 
f EFZ, 

(3) 

of minimizing the empirical error over the class FZn. 
Then for  any n and E ,  

In the next section we focus on a data dependent class 
we call linear point-to-point (LPP). The class LPP 
is a subset of the class of linear classifiers. When a 
data dependent class 3 is obtained by restricting a 
traditional class 3 

s,,~,(F) 5 (2n)VC(5) + I. 
Since the VC dimension for the class of linear classifiers 
in Rd is given by d + 1, we have 

Sn,2n(FrL) I (2nId+' + 1. 

These bounds may be very loose. Indeed, Cannon 
et al. (2002) showed that the shatter coefficients for 
LPP are in fact independent of dimension and sat- 
isfy Sn,2,(3,) 5 8n3 - 2n. These bounds may be 
plugged directly into Theorem 2.1 to obtain proba- 
bilistic bounds on estimation error similar to (1). 

It is interesting to note that for LPP the shatter coef- 
ficients satisfy (see Cannon et al. 2002, p. 348) 

s,,~,(F,) 5 (2n)vc2n(F) + 1, 

where VCz,(F) is the data dependent VC dimension 
of order 2n and is defined as 

max n. 
VC2n(3) = {n  : 3 zngz~, ,  : FZ2,, shatters z,} 

In words, VC2,(3) is the size of the largest subset of 
some 2n points which is shattered by the data depen- 
dent class on those 2n points. When the data depen- 
dent class F is obtained by restricting a traditional 
class 5 then VC2n(3) will be less than or equal to the 
VC dimension VC(3). 

3. A Simple Linear Classifier 

We present a representative example of a simple clas- 
sifier derived from a data dependent hypothesis class. 
The class we consider was introduced by Cannon et al. 
(2002) as a restriction of the traditional class of lin- 
ear classifiers. For computational considerations we 
let X = Rd with the usual inner product and metric. 

The linear point-to-point (LPP) data-dependent hy- 
pothesis class is the subset of linear classifiers whose 
orientations are determined by the pairwise differences 
between samples A? = x,(i>-z,(j), i # j .  For a fixed 
sample pair (zn(i) ,zCn(j)) ,  consider the family of lin- 
ear classifiers defined by all hyperplanes orthogonal to 
A:. The class of indicator sets on this family is lin- 
early ordered by subset inclusion. The LPP class is 
the (polynomial) union of these families over all Sam- 
ple pairs in the training data. More formally LPP is 
the function class 

3-2, = 

{f : f(z) = X(A2 . z - 

for i # j and where 7-1 is the heaviside function. 

The ordering structure on the indicator sets is the 
defining characteristic of a simple class. Indeed ex- 
ploiting this structure makes it an easy matter to de- 
sign a polynomial-time learning algorithm that opti- 
mizes the empirical risk (3) over the class. Consider 
the following brute force approach where we are given 
an n-sample z, as input. For a fixed A; we com- 
pute and sort the dot products V k  = A2 . zn(lc) for 
IC = 1 to n and order the elements of the n-sample z, 
with respect to the sorted list. Now the dot products 
{2rk}E,l are used to determine thresholds bk = vk+iktl 
for a sequence of n - 1 linear classifiers whose orienta- 
tions are determined by A:. Since the related indica- 
tor sets are ordered by subset inclusion and change 
incrementally at each new threshold, they are triv- 
ial to compute using the newly sorted z , .~  Similarly 

2The extreme classifiers that label all points the same 



we can use .the ordering on the indicator sets to fa- 
cilitate computation of the associated empirical errors 
and therefore to choose an empirically optimal b* with 
respect to A:. So far computational expense is domi- 
nated by computing the dot products and sorting and 
is therefore O(nd + nlogn). To find a globally opti- 
mal orientation and threshold pair we repeat this for 
all O(n2) differences A?. The overall run time is then 
O(n3(d +logn)). Even a naive implementation of this 
brute force algorithm has many attractive properties. 
Firstly, it exactly minimizes the empirical error in a 
finite number of steps. Secondly, it uses only multi- 
plications, additions and comparisons and is therefore 
likely to be more robust to finite precision computa- 
tions than than other learning algorithms that employ 
operations such as division, linear solvers, and itera- 
tive solvers. Thirdly, it has no free parameters for the 
user to specify and analyze. 

Since the LPP function class consists of linear clas- 
sifiers, we can implement a kernelized version of the 
method in the usual way (e.g. see Cristianini and 
Shawe-Taylor 2000). Let q5 : X ---t x be a map 
with a kernel K ( x l , x 2 )  such that (q5 (x1) ,q5 (~2) )  = 
K ( x l , x 2 ) ,  where the dimension 2 of x may be much 
larger than d. It is straightforward to implement the 
LPP classifier in the mapped space X without having 
to compute in X by using the kernel to compute inner 
products. Employing a kernel map is attractive in that 
it results in a very minor change in the computational 
requirements, and does not affect the estimation error 
bounds for the class. 

This method also has some very attractive properties 
when coupled with boosting. Recall that boosting is a 
procedure that, given a training set, produces an over- 
all classifier that is a weighted majority vote of clas- 
sifiers from a base hypothesis class. The procedure is 
unchanged by the utilization of a data dependent base 
hypothesis class provided the class is the same for each 
round of boosting. Moreover boosting strategies usu- 
ally call for the determination of a base classifier at 
each round that minimizes a weighted empirical er- 
ror. However, most classifier design algorithms used 
in practice do not minimize weighted empirical error 
because it is computationally intractable for the func- 
tion classes they consider (e.g., traditional linear clas- 
sifiers), and so satisfaction of this objective is rarely 
guaranteed. On the other hand, with only minor modi- 
fications the brute force algorithm above is guaranteed 
to minimize weighted empirical error and therefore fa- 
cilitates bonafide boosting procedures. 

~~ 

are not accounted for in this discussion but should be in- 
cluded when implementing this approach. 

4. Experimental Results 

The development of practical methods for classifier de- 
sign involves a trade-off between computation, estima- 
tion error and approximation error. In the previous 
section we presented a computationally efficient learn- 
ing strategy. The shatter coefficient bounds for this 
learning strategy give rise to favorable estimation error 
bounds that are independent of dimension. This fact 
is highlighted in what follows where we demonstrate 
that our approach is highly resistant to overfitting, 
even when the dimension is high and the sample size is 
small. The advantages of computational efficiency and 
favorable estimation error must be balanced against a 
possible sacrifice in approximation error. In principle, 
in the data dependent hypothesis framework, approxi- 
mation error is primarily controlled through the choice 
of data dependency. Ideally this choice is based on first 
principles knowledge of the problem at hand. 

4.1. Synthetic Data 

Our first set of experiments are performed on synthetic 
data generated from Gaussian distributions where we 
can compute the optimal classifiers and the values for 
the error minimization. We refer to the generalization 
error at the optimal measurable classifier as the Bayed 
error eg. In our experiments we report estimates of 
the average generalization error E[e( f ) ]  = J e(f)d’P 
of the learning strategy, where the average is over all 
training sets of a given size n generated according to 
an i.2.d. sample plan. 

We compare the LPP learning strategy with the Gaus- 
sian Maximum Likelihood (GML) learning strategy 
(e.g. see Fukunaga 1990). We choose GML because it 
has similar computational requirements and is a time 
honored method whose generalization properties are 
well known, particularly for the problem instances we 
have chosen for our experiments. Indeed, we expect 
the GML learning strategy to perform well in these 
experiments because it exploits the knowledge that 
the conditional class distributions are Gaussian. In 
this case the optimal classifier can be expressed as a 
quadratic classifier of the form 

X ( ( x  - m1) * C,l(z - m1) - (x - mo) * C& - mo) 

+In ( l ~ l l / I ~ O l )  + T )  

(5) 
where the m, and Ci are the conditional class means 
and covariances and the threshold T is chosen so that 
T = 2ln(P(y = l ) / P ( y  = 0)). The GML learning 
strategy produces a quadratic classifier by comput- 
ing maximum likelihood estimates of mi, Ci, substi- 
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Figure 1: This figure summarizes the experimental results on the 171 distribution. 

tuting them into (5), and then using maximum likeli- 
hood estimates of P ( y  = i) to determine T.  To make 
this strategy complete we must specify its course of 
action when the estimated covariance matrices have 
reduced rank. In addition we would like to be ro- 
bust to cases where the estimated covariance matrices 
are ill-conditioned. We address these concerns by in- 
verting regularized covariance estimates of the form 
& + PI where ki is the maximum likelihood esti- 
mate and p > 0 is the ‘reguhrization parameter for 
our GML strategy. The computational requirements 
fo; this strategy are O(nd2 t- d3 + n log n). 

We. also compare our simple classifier learning strat- 
egy with support vector machines. We choose support 
vector machines because, like the learning strategy for 
LPP, they possess estimation error bounds that are in- 
dependent of dimension (Cristianini & Shawe-Taylor, 
2000) and can be solved by a computationally efficient 
learning algorithm (e.g. see Hush and Scovel 2003). 
In particular we employ the soft margin support vec- 
tor machine (SVM-SM) as described by Cortes and 
Vapnik (1995) with the specific SVMlig’’t learning al- 
gorithm (Joachims, 1999). This learning strategy has 
three parameters: The kernel function K ,  the posi- 
tive real value C that weights the slack variables in 
the SVM-SM criterion, and a positive real value to1 
associated with the stopping condition for the algo- 
rithm. The run times of SVM-SM algorithms tend to 
be more variable than the run times of simple clas- 
sifier algorithms or GML algorithms. Although the 
run time guarantees for practical SVM-SM algorithms 
are as high as O(C2n510gn) (Hush & Scovel, 2003), 
empirical evidence suggests that the run time depen- 
dence on n tends to be no higher than cubic (Joachims, 
1999). 

In our synthetic data experiments we set d = 50 and 
generate data according to probability distributions 
on Rd x (0,l)  where the class conditional distribu- 
tions Po and PI are Gaussian. We perform experi- 
ments with two different distributions whose parame- 
ters are chosen so that the Bayed error is 0.15. For 
both distributions the class marginal probabilities are 
P ( y  L- 0) = 1/3,P(y = 1) = 2/3. In the first dis- 
tribution the class means are equal po pi, = 6 and 
the class covariances are different CO = 1.4671 and 
C1 = I .  In the second distribution the class covari- 
ances are equal CO = C1 = 1 and the class means are 
different po = (0.276)i and p1 = 3. Following Fuku- 
naga (1990) we refer to the first distribution as the 
1-71 distribution and the second as the 1-1,distribu- 
tion. F’ukunaga (1990) suggests that practical learning 
strategies should be general enough to perform well on 
both of these distributions because in many classifica- 
tion problems the characteristic that distinguishes the 
two classes is some combination of mean difference and 
covariance difference. 

For each learning strategy (e.g. LPP, SVM-SM, GML, 
boosting, etc.), and each training sample size n = 
10,30,50,100,250,500 the following is repeated k = 20 
times. First, n samples are randomly generatedA and 
used to train a classifier f .  Next, the error e ( f ) ,  of 
the resulting classifier is estimated using a test set of 
50,000 random samples 3.  Finally, the estimated error 
is averaged over the k = 20 runs to obtain an estimate 
of E[e(f)]. Although the values we report are “esti- 
mates of averages”, for expository purposes we drop 
the terms estimate and average and simply refer to 

3The same test set of 50,000 2.2.d. random samples is 
used for all experiments. 



................................................. 

0 100 200 300 400 500 
0.1 

n 

(a) LPP: kernelized and boosted (b) LPP vs. other methods (c) Error deviance comparison 

Figure 2: This figure summarizes the experimental results on the 1-1 distribution. 

them as the errors or generalization errors. very powerful alternative methods. It is important 

The results for the 1-1 distribution are illustrated 
in Figures l(a)-l(c). In Figures l(a)-l(b) the Bayes’ 
error of e g  = 0.15 is shown as a dark dotted line. Fig- 
ure l(a) illustrates how the performance of a simple 
class that is not particularly well suited to this data 
distribution can be improved by adding a kernel and 
boosting. This figure plots the generalization error 
as a function of n for LPP, LPP with Gaussian ker- 
nel (LPP-G), LPP with 500 rounds of boosting (LPP- 
B), and boosted LPP with Gaussian kernel (LPP-GB). 
The Gaussian kernel is K(z l , z2)  = e-11z1-z2112/d and 
LPP-GB uses the AdaBoost method described by Re-  
und and Shapire (1997). These results demonstrate 
how the approximation error can be dramatically re- 
duced by incorporating kernels and boosting. 

In Figure l(b) we compare the LPP classifier to some 
powerful alternative learning strategies. This figure 
plots the generalization error as a function of n for 
LPP, LPP-GB, GML, and SVM-SM. The regulariza- 
tion parameter for GML was /3 = For the 
support vector machine we used a Gaussian kernel 
(same as above) and the default values of C and to1 
in SVMlight (i.e. C = n/ (Cy=l K(z,(i),xn(i))) and 
to1 = 0.001). The results here are somewhat sur- 
prising. Firstly, the SVM-SM, LPP, and LPP-GB 
strategies all perform very well compared to  GML 
even though they are not explicitly designed to ex- 
ploit the knowledge that the probability distributions 
are Gaussian. Secondly, the LPP-GB strategy attains 
much lower generalization errors than SVM-SM for the 
smaller sample sizes. This demonstrates that by ker- 
nels and boosting a simple classifier strategy is able to 
attain generalization errors that are superior to some 

to point out that these comparisons would be much 
different for larger sample sizes. Indeed, the perfor- 
mance of SVM-SM is already superior at TI = 500 and 
for sufficiently large n the performance of GML will 
also improve. Nevertheless it is striking that a simple 
classifier may be so clearly dominant at these smaller 
sample sizes. 

These results are obtained with a simple classifier 
strategy that is more stable than GML and SVM-SM. 
We use the term stable to refer to the sensitivity of 
the performance of the learning strategy to changes 
in the training data. Formal definitions of stability 
are described by Bousquet and Elisseeff (2002) where 
they are used to study the performance of support 
vector machines. In particular they show how to ob- 
tain bounds on the average classifier error deviance 
E [ l e ( f )  -i?(f)l] as a function of stability so that learn- 
ing strategies with good stability have small error de- 
viance. In Figure l ( ~ )  we plot (an estimate of) the 
average classifier error deviance E[le( f )  - &@)I] as a 
function of n for LPP, GML and SVM-SM. The error 
deviance is substantially smaller for the LPP learning 
strategy. Such results are predicted by the error de- 
viance bounds in Equation 2. This characteristic of 
the simple classifier learning strategy means that we 
have higher confidence in our estimates of generaliza- 
tion error. More precisely it means that the true gen- 
eralization error is known to fall within a smaller range 
with higher confidence. This is particularly useful in 
applications where a large test set is not available and 
it is important to have an accurate estimate of perfor- 
mance. 

Results for the same set of experiments with the 1-1 



7 Ionosohere I Diabetes I Tuft’s Nose I 
19.0/11.4/6.50 23.7/24.0/26.7 

SVM-SM 22.8/22.7 mL 13.0;g.l ’ 
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- 
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Table 1: Estimates of the average generalization value for LPP, GML, SVM-SM and random forests (RF). LPP results 
have three entries A/B/C where A is the value for the basic class, B is the value for the class with quadratic 
kernel and C is the value for the class with quadratic kernel and 500 rounds of boosting (except for the Tuft’s 
nose data where 250 rounds of boosting is used). The reported results are for the final round of boosting. 
The SVM-SM has two entries A/B where A is the linear support vector machine and B is the support vector 
machine with quadratic kernel. No result is provided for GML on the Tuft’s nose data because the dimension 
of the data is too high to obtain meaningful results with this method. 

23.2 10.1 

distribution are illustrated in Figures 2(a)-2(c). The 
parameters for the GML and SVM-SM learning strate- 
gies are the same as our first experiment. These results 
again demonstrate that the simple classifier strategy 
is competitive with powerful alternative methods. In 
Figure 2(c) we plot the average classifier error deviance 
E[\e(f) - e( . f ) ( ]  as a function of n for LPP, GML and 
SVM-SM. Again we see that the error deviance is sub- 
stantially smaller for the simple class LPP. 

4.2. Real-World Data 

This section describes experiments with three differ- 
ent real-world data sets. The first two are the ‘iono- 
sphere and Pima Indian diabetes data sets from the 
UCI repository (Blake & Merz, 1998) and the third is 
an artificial nose data set collected at Tufts University 
(Dickinson et al., 1996; White et al.. 1996). The iono- 
sphere data set consists of n = 351 samples of radar 
signals, no = 126 with label y = 0 that passed through 
the ionosphere and n1 = 225 with label y = 1 that did 
not pass through the ionosphere. Each radar signal 
contains d = 34 real valued measurements. The Pima 
Indian data set consists of n = 768 samples each con- 
taining d = 8 measurements. While it is often asserted 
that this data set has no missing values, Ripley (1996) 
comments that this is not true. We follow Ftipley’s 
recommendations reducing the data set to n = 532 
samples with d = 7 measurements each. This reduced 
data set contains no = 355 samples with label y = 0 
(no diabetes) and nl = 177 samples with y = 1 (dia- 
betes). The third data set is taken from an artificial 
nose developed at Tufts University. The nose consists 
of 19 optical fibers each of which has been coated on 
one end with a different organic dye. The data con- 
sists of the change in emission fluorescence intensity 
over time for each fiber. The change in intensity is 
measured at both the 620nm and 680nm wavelengths 
in each fiber. A 20 second time interval is sampled 
at 60 equally spaced points for each wavelength in 

each fiber. Hence each record consists of 38 observa- 
tions each of which contains 60 samples, so each data 
sample contains d = 2280 measurements. Data sam- 
ples were collected by exposing the fiber bundle to a 4 
second pulse of a particular compound or mixture of 
compounds. The data set contains no = 760 samples 
where the mixture contained trichloroethylene (TCE) 
and n1 = 352 samples where the mixture contained no 
TCE, for a total of n = 1112 samples. 

For each learning strategy the following is repeated 
IC = 100 times for the ionosphere and diabetes data 
and k = 25 times for the nose data. The data set is 
randomly partitioned into two subsets: a training set 
containing approximately 2/3 of the data and a test set 
containing the remaining 1/3. The learning strategy 
is applied to the training set and an estimate of the 
error of the resulting classifier is computed using the 
test set. The errors are averaged over the IC runs to 
obtain estimates of the average generalization error. 

We compare learning strategies for all three data sets. 
For the ionosphere data Breiman (1999) reports a gen- 
eralization error estimate of 5.5% for his random forest 
learning strategy. We implemented the same random 
forest learning strategy using Breiman’s software and 
obtained an estimate of 6.6% with our error estima- 
tion procedure. On the reduced Pima Indian data set 
Ripley (1996) obtained a generalization error estimate 
of about 20% for the best classifier, and he performed 
a diagnostic which he claims lower bounds the Bayes 
error for this problem at about 15%. Using the nose 
data set Priebe (2001) estimates a generalization er- 
ror of 12.5% for the best k-nearest-neighbor strategy, 
and 4.5% for a generalized Wilcoxon-Mann-Whitney 
classifier. 

We report our results for the LPP learning strat- 
egy along with GML, SVM-SM and random forests 
(RF). For GML we used a regularization parameter 
p = For support vector machines we used the 



SVM"gsht learning algorithm described by Joachims 
(1999) with default settings for the parameter values. 
LPP classifiers and support vector machines were em- 
ployed in both their basic form and with the quadratic 
kernel K(zl,z2) = ((21,22)+1)2. LPP with quadratic 
kernel was boosted 500 rounds using the AdaBoost 
method (Fkeund & Shapire, 1997). We used the ran- 
dom forest implementation Forest-FU (Breiman, 1999) 
with number of trees t = 1000 and number of variables 
per node F = 4 for the ionosphere and diabetes data 
sets, and t = 500 and F = 20 for the nose data. The 
results are shown in Table 1. 

It is instructive to consider what can be achieved with 
the nose data by the restricted class LPP compared 
to traditional linear classifiers. It is no surprise that 
this data set of 1112 samples in 2280 dimensions is 
linearly separable. Nearly all training algorithms for 
traditional linear classifiers are designed to produce a 
separating solution when one exists. Of all the linear 
classifiers that separate the data the SVM-SM solu- 
tion is generally considered among the best. On the 
other hand the LPP solution, which does not separate 
the data, provides almost identical performance. The 
LPP strategy has the additional benefit that it has a 
lower error deviance which means that estimates of its 
performance are more accurate. The noqseparability 
of the LPP solution also means that boosting can be 
employed to improve performance, which is not true 
for traditional linear Classifier learning strategies that 
produce separating solutions 4. This is significant in 
the nose data because boosting LPP leads to a perfor- 
mance that is significantly better than SVM-SM. 
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